2,410 research outputs found

    Implications for the U.S. of Anglo-French Defense Cooperation

    Get PDF
    The paper analyzes, from a predominantly UK perspective, the implications for the U.S. of the November 2, 2010, Anglo-French Defence Cooperation Treaty. The current pressures on British and French defence budgets were the primary driving force behind this cooperative effort. London and Paris have made steps toward improving joint efforts in a number of areas, with defence acquisition and industrial cooperation being prominent. In the UK, there appears to be strong political support at the highest levels, which has permeated to lower levels in the bureaucracy, while the UK defence industry appears to be cautiously optimistic about future business opportunities. The impact of enhanced Anglo-French cooperation on the U.S. would appear to be largely favourable for Washington. Rather than providing a basis for weakened UK attention to the U.S., as some fear, the efforts by London and Paris will potentially generate greater national military capability from scarce resources and could serve as a vehicle for broader European efforts to enhance their defence capabilities. While multinational European military development projects are viewed with scepticism in the UK, the Anglo-French arrangement could strengthen the prospects for bilateral projects in which other European states may elect to participate

    On the Transition and Migration of Flight Functions in the Airspace System

    Get PDF
    Since ~400 BC, when man first replicated flying behavior with kites, up until the turn of the 20th century, when the Wright brothers performed the first successful powered human flight, flight functions have become available to man via significant support from man-made structures and devices. Over the past 100 years or so, technology has enabled several flight functions to migrate to automation and/or decision support systems. This migration continues with the United States NextGen and Europe s Single European Sky (a.k.a. SESAR) initiatives. These overhauls of the airspace system will be accomplished by accommodating the functional capabilities, benefits, and limitations of technology and automation together with the unique and sometimes overlapping functional capabilities, benefits, and limitations of humans. This paper will discuss how a safe and effective migration of any flight function must consider several interrelated issues, including, for example, shared situation awareness, and automation addiction, or over-reliance on automation. A long-term philosophical perspective is presented that considers all of these issues by primarily asking the following questions: How does one find an acceptable level of risk tolerance when allocating functions to automation versus humans? How does one measure or predict with confidence what the risks will be? These two questions and others will be considered from the two most-discussed paradigms involving the use of increasingly complex systems in the future: humans as operators and humans as monitors

    Who knows best? Understanding the use of research-based knowledge in conservation conflicts

    Get PDF
    The authors are grateful to the Macaulay Development Trust (RG12845-10) and the University of Aberdeen (CF10166-93), for funding this research. We would also like to thank Rene van der Waal and three anonymous referees for their constructive comments on the earlier versions of this manuscript.Peer reviewedPostprin

    Increasing Pilots Understanding of Future Automation State an Evaluation of an Automation State and Trajectory Prediction System

    Get PDF
    A pilot in the loop flight simulation study was conducted at NASA Langley Research Center to evaluate a trajectory prediction system. The trajectory prediction system computes a five-minute prediction of the lateral and vertical path of the aircraft given the current and intent state of the automation. The prediction is shown as a graphical representation so the pilots can form an accurate mental model of the future state. Otherwise, many automation changes and triggers are hidden from the flight crew or need to be consolidated to understand if a change will occur and the exact timing of the change. Varying dynamic conditions like deceleration can obscure the future trajectory and the ability to meet constraints, especially in the vertical dimension. Current flight deck indications of flight path assume constant conditions and do not adequately support the flight crew to make correct judgments regarding constraints. The study was conducted using ten commercial airline crews from multiple airlines, paired by airline to minimize procedural effects. Scenarios spanned a range of conditions that provided evaluation in a realistic environment with complex traffic and weather conditions. In particular, scenarios probed automation state and loss of state awareness. The technology was evaluated and contrasted with current state-of-the-art flight deck capabilities modeled from the Boeing 787. Objective and subjective data were collected from aircraft parameters, questionnaires, audio/video recordings, head/eye tracking data, and observations. This paper details findings about the trajectory prediction system including recommendations about further study

    Policy committee for adaptation in multi-domain spoken dialogue systems

    Get PDF
    Moving from limited-domain dialogue systems to open domain dialogue systems raises a number of challenges. One of them is the ability of the system to utilise small amounts of data from disparate domains to build a dialogue manager policy. Previous work has focused on using data from different domains to adapt a generic policy to a specific domain. Inspired by Bayesian committee machines, this paper proposes the use of a committee of dialogue policies. The results show that such a model is particularly beneficial for adaptation in multi-domain dialogue systems. The use of this model significantly improves performance compared to a single policy baseline, as confirmed by the performed real-user trial. This is the first time a dialogue policy has been trained on multiple domains on-line in interaction with real users.The research leading to this work was funded by the EPSRC grant EP/M018946/1 ”Open Domain Statistical Spoken Dialogue Systems”.This is the author accepted manuscript. The final version is available from IEEE via http://dx.doi.org/10.1109/ASRU.2015.740487

    Concept of Operations for Integrated Intelligent Flight Deck Displays and Decision Support Technologies

    Get PDF
    The document describes a Concept of Operations for Flight Deck Display and Decision Support technologies which may help enable emerging Next Generation Air Transportation System capabilities while also maintaining, or improving upon, flight safety. This concept of operations is used as the driving function within a spiral program of research, development, test, and evaluation for the Integrated Intelligent Flight Deck (IIFD) project. As such, the concept will be updated at each cycle within the spiral to reflect the latest research results and emerging development

    Creating a Realistic Weather Environment for Motion-Based Piloted Flight Simulation

    Get PDF
    A flight simulation environment is being enhanced to facilitate experiments that evaluate research prototypes of advanced onboard weather radar, hazard/integrity monitoring (HIM), and integrated alerting and notification (IAN) concepts in adverse weather conditions. The simulation environment uses weather data based on real weather events to support operational scenarios in a terminal area. A simulated atmospheric environment was realized by using numerical weather data sets. These were produced from the High-Resolution Rapid Refresh (HRRR) model hosted and run by the National Oceanic and Atmospheric Administration (NOAA). To align with the planned flight simulation experiment requirements, several HRRR data sets were acquired courtesy of NOAA. These data sets coincided with severe weather events at the Memphis International Airport (MEM) in Memphis, TN. In addition, representative flight tracks for approaches and departures at MEM were generated and used to develop and test simulations of (1) what onboard sensors such as the weather radar would observe; (2) what datalinks of weather information would provide; and (3) what atmospheric conditions the aircraft would experience (e.g. turbulence, winds, and icing). The simulation includes a weather radar display that provides weather and turbulence modes, derived from the modeled weather along the flight track. The radar capabilities and the pilots controls simulate current-generation commercial weather radar systems. Appropriate data-linked weather advisories (e.g., SIGMET) were derived from the HRRR weather models and provided to the pilot consistent with NextGen concepts of use for Aeronautical Information Service (AIS) and Meteorological (MET) data link products. The net result of this simulation development was the creation of an environment that supports investigations of new flight deck information systems, methods for incorporation of better weather information, and pilot interface and operational improvements for better aviation safety. This research is part of a larger effort at NASA to study the impact of the growing complexity of operations, information, and systems on crew decision-making and response effectiveness; and then to recommend methods for improving future designs

    Evaluation of Technology Concepts for Energy, Automation, and System State Awareness in Commercial Airline Flight Decks

    Get PDF
    A pilot-in-the-loop flight simulation study was conducted at NASA Langley Research Center to evaluate flight deck systems that (1) provide guidance for recovery from low energy states and stalls, (2) present the current state and expected future state of automated systems, and/or (3) show the state of flight-critical data systems in use by automated systems and primary flight instruments. The study was conducted using 13 commercial airline crews from multiple airlines, paired by airline to minimize procedural effects. Scenarios spanned a range of complex conditions and several emulated causal and contributing factors found in recent accidents involving loss of state awareness by pilots (e.g., energy state, automation state, and/or system state). Three new technology concepts were evaluated while used in concert with current state-of-the-art flight deck systems and indicators. The technologies include a stall recovery guidance algorithm and display concept, an enhanced airspeed control indicator that shows when automation is no longer actively controlling airspeed, and enhanced synoptic pages designed to work with simplified interactive electronic checklists. An additional synoptic was developed to provide the flight crew with information about the effects of loss of flight critical data. Data was collected via questionnaires administered at the completion of flight scenarios, audio/video recordings, flight data, head and eye tracking data, pilot control inputs, and researcher observations. This paper presents findings derived from the questionnaire responses and subjective data measures including workload, situation awareness, usability, and acceptability as well as analyses of two low-energy flight events that resulted in near-stall conditions

    Usability Evaluation of Indicators of Energy-Related Problems in Commercial Airline Flight Decks

    Get PDF
    A series of pilot-in-the-loop flight simulation studies were conducted at NASA Langley Research Center to evaluate indicators aimed at supporting the flight crews awareness of problems related to energy states. Indicators were evaluated utilizing state-of-the-art flight deck systems such as on commercial air transport aircraft. This paper presents results for four technologies: (1) conventional primary flight display speed cues, (2) an enhanced airspeed control indicator, (3) a synthetic vision baseline that provides a flight path vector, speed error, and an acceleration cue, and (4) an aural airspeed alert that triggers when current airspeed deviates beyond a specified threshold from the selected airspeed. Full-mission high-fidelity flight simulation studies were conducted using commercial airline crews. Crews were paired by airline for common crew resource management procedures and protocols. Scenarios spanned a range of complex conditions while emulating several causal factors reported in recent accidents involving loss of energy state awareness by pilots. Data collection included questionnaires administered at the completion of flight scenarios, aircraft state data, audio/video recordings of flight crew, eye tracking, pilot control inputs, and researcher observations. Questionnaire response data included subjective measures of workload, situation awareness, complexity, usability, and acceptability. This paper reports relevant findings derived from subjective measures as well as quantitative measures

    Concentrations of criteria pollutants in the contiguous U.S., 1979 – 2015: Role of model parsimony in integrated empirical geographic regression

    Get PDF
    BACKGROUND: National- or regional-scale prediction models that estimate individual-level air pollution concentrations commonly include hundreds of geographic variables. However, these many variables may not be necessary and parsimonious approach including small numbers of variables may achieve sufficient prediction ability. This parsimonious approach can also be applied to most criteria pollutants. This approach will be powerful when generating publicly available datasets of model predictions that support research in environmental health and other fields. OBJECTIVES: We aim to (1) build annual-average integrated empirical geographic (IEG) regression models for the contiguous U.S. for six criteria pollutants, for all years with regulatory monitoring data during 1979 – 2015; (2) explore the impact of model parsimony on model performance by comparing the model performance depending on the numbers or variables offered into a model; and (3) provide publicly available model predictions. METHODS: We compute annual-average concentrations from regulatory monitoring data for PM10, PM2.5, NO2, SO2, CO, and ozone at all monitoring sites for 1979-2015. We also compute ~900 geographic characteristics at each location including measures of traffic, land use, and satellite-based estimates of air pollution and landcover. We then develop IEG models, employing universal kriging and summary factors estimated by partial least squares (PLS) of independent variables. For all pollutants and years, we compare three approaches for choosing variables to include in the model: (1) no variables (kriging only), (2) a limited number of variables chosen by forward selection, and (3) all variables. We evaluate model performance using 10-fold cross-validation (CV) using conventional randomly-selected and spatially-clustered test data. RESULTS: Models using 3 to 30 variables generally have the best performance across all pollutants and years (median R2 conventional [clustered] CV: 0.66 [0.47]) compared to models with no (0.37 [0]) or all variables (0.64 [0.27]). Using the best models mostly including 3-30 variables, we predicted annual-average concentrations of six criteria pollutants for all Census Blocks in the contiguous U.S. DISCUSSION: Our findings suggest that national prediction models can be built on only a small number (30 or fewer) of important variables and provide robust concentration estimates. Model estimates are freely available online
    • …
    corecore